ATP Enhances Spontaneous Calcium Activity in Cultured Suburothelial Myofibroblasts of the Human Bladder
نویسندگان
چکیده
BACKGROUND Suburothelial myofibroblasts (sMF) are located underneath the urothelium in close proximity to afferent nerves. They express purinergic receptors and show calcium transients in response to ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Since ATP concentration is likely to be very low during the initial filling phase, we hypothesized that sMF Ca(2+) activity is affected even at very low ATP concentrations. We investigated ATP induced modulation of spontaneous activity, intracellular calcium response and purinergic signaling in cultured sMF. METHODOLOGY/PRINCIPAL FINDINGS Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10(-16) to 10(-4) mol/l) induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3) were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18% ± 1.65 of the sMF (N = 48 experiments). ATP significantly increased calcium activity even at 10(-16) mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1 µM; A-317491, 1 µM), and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. CONCLUSIONS/SIGNIFICANCE Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca(2+) response in cultured sMF at very low concentrations, most likely involving P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions.
منابع مشابه
Modulation of bladder myofibroblast activity: implications for bladder function
Bladder suburothelial myofibroblasts may modulate both sensory responses from the bladder wall and spontaneous activity. This study aimed to characterize further these cells in their response to exogenous agents implicated in mediating the above activity. Detrusor strips, with or without mucosa, and isolated suburothelial myofibroblasts were prepared from guinea pig bladders. Isometric tension,...
متن کاملATP Signalling in the Urinary Bladder
The seminal work by Ferguson and collaborators in 1997 using electric filed stimulation and hydrostatic pressure changes in the urinary bladder have demonstrated that urothelial cells release a large amount of ATP, suggesting that these cells are the major source of ATP in the urinary bladder [1]. However, other bladder cells release this molecule. For instance, parasympathetic and sympathetic ...
متن کاملGene expression of muscarinic, tachykinin, and purinergic receptors in porcine bladder: comparison with cultured cells
Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5), tachykinin (NK1/NK2), and purinergic (P2X1/P2Y6) receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compa...
متن کاملCytokine Effects on Gap Junction Communication and Connexin Expression in Human Bladder Smooth Muscle Cells and Suburothelial Myofibroblasts
BACKGROUND The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 ...
متن کاملExpression and function of rat urothelial P2Y receptors.
The control and regulation of the lower urinary tract are partly mediated by purinergic signaling. This study investigated the distribution and function of P2Y receptors in the rat urinary bladder. Application of P2Y agonists to rat urothelial cells evoked increases in intracellular calcium; the rank order of agonist potency (pEC(50) +/- SE) was ATP (5.10 +/- 0.07) > UTP (4.91 +/- 0.14) > UTPga...
متن کامل